
International Journal of Research in Advent Technology, Vol.6, No.5, May 2018 

E-ISSN: 2321-9637 

Available online at www.ijrat.org 

 

419 

 

Axially Symmetric Cosmological Models In ),( TRf  

Gravity With Time Varying Deceleration Parameter 

Pramod Khade
 

Department of Mathematics, Vidyabharati  Mahavidylaya, Amravati-444402. 

Email: pramodmaths04@gmail.com 

 

Abstract: In the present paper an attempt has been made to study an axially symmetric space-time is considered in 

the presence of a perfect fluid source in the framework of  ),( TRf  gravity. We consider two types of scale factors 

(i)
 
   tta sinh  and (ii)

 
  tteta  which yield time dependent DP. To get deterministic solution, expansion 

scalar  is proportional to the shear scalar  have been used. Some physical behavior for both models have been 

discussed by using physical parameters.  
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1. INTRODUCTION 

During last decade, there has been several modifications 

of general relativity to provide natural gravitational 

alternative for dark energy. It has been suggested that 

cosmic acceleration can be achieved by replacing the 

Einstein-Hilbert action of general relativity with a 

general function Ricci scalar, f (R). Modification of 

general relativity are attracting more and more attention 

to explain late time acceleration and dark energy. There 

have been several modified theories like f (R) gravity, f 

(G) gravity f(T) gravity or f (R,G) gravity and so on 

investigated by several researchers. A generalization of f 

(R) modified theories of gravity was proposed in [1]. 

Among the various modifications, f (R) theory of 

gravity is considered as the most suitable due to the 

cosmologically important f (R) models. It has been 

suggested that cosmic acceleration can be achieved by 

replacing the Einstein–Hilbert action of general 

relativity with a general function Ricci scalar, f (R). 

Nojiri et al [2] have studied f (R), f (G) or f (R,G) 

gravity in various contexts. Many researchers [3–11] 

have investigated f (R) gravity in different contexts. 

Shamir [12] has proposed a physically viable f (R) 

gravity model, which shows the unification of early-

time inflation and late-time acceleration. Paul et al. [13] 

obtained FRW models in f(R) gravity while Sharif and 

Shamir [14,15] have studied the solutions of Bianchi 

type I and V space-times in the frame work of f(R) 

gravity. Shamir [16] studied the exact vacuum solutions 

of Bianchi type I, III and Kantowski-Sachs space-times 

in the metric version of f(R) gravity. Adhav [17] has 

obtained LRS Bianchi type I cosmological model in f(R, 

T) gravity. Reddy et al. [18] have discussed Bianchi 

type III cosmological model in f(R, T) while Reddy et 

al. [19], Reddy and Shanthikumar [24] studied Bianchi 

type III dark energy model and some anisotropic 

cosmological models, respectively, in f(R, T) gravity. 

Chaubey and Shukla [20] have constructed a new class 

of Bianchi cosmological model in f(R, T) gravity. The 

exact solutions of the Einstein-Rosen cosmological 

model filled with perfect fluid have been derived in f(R, 

T) gravity by Rao and Neelima [21]. 

Axially symmetric cosmological models with string dust  

cloud source developed by Bhattacharaya and Karade 

[22]. Axially symmetric space-times representing 

material distribution were obtained by Marder [23]. 
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Axially symmetric space-times play an important role in 

the study of universe on a scale in which anisotropy and 

inhomogeneity are not ignored [24]. Kilinc [25] showed 

that axially symmetric cosmological models have made 

significant contributions in understanding some 

essential features of the universe such as the formation 

of galaxies during the early stages of the evolution. Jain 

et al. [26] studied axially symmetric space-time with 

wet dark fluid in bimetric theory. Energymomentum 

localization in Marder’s axially symmetric space-time 

has been studied by Aygun et al. [27]. Recently Rao et 

al. [28] have obtained axially symmetric cosmological 

model with perfect fluid in general relativity and in f(R, 

T) gravity. Sahoo et al. [29] obtained the exact solution 

of the field equations in f(R, T) theory with the help of 

special law of variation for Hubble parameter. Two 

fluid axially symmetric cosmological models in f(R, T) 

theory obtained by Pawar et al. [30].     

The constant DP is commonly used by cosmologist in 

literature with various aspects. In order to make more 

detailed description of the kinematics of cosmological 

expansion, it is useful to consider various forms of time 

dependence deceleration parameter. One of the most 

popular form is known as linearly varying deceleration 

parameter (LVDP). Linear parametrization of the DP 

represents quite naturally. The next logical step towards 

the behaviour of future model is either it expands 

forever or ends with a Big Rip in finite future. This can 

be parametrized with redshift parameter z, cosmic scale 

factor a and with cosmic time t. Transition of the 

universe from the decelerated phase to the present 

accelerating phase motivate us to consider variable DP. 

Several researchers (Pradhan et al. [31], Amirhashchi et 

al. [32], Akarsu and Dereli [33]) have discussed the 

evolution of the universe with variable DP. Also Mishra 

et al [34] have proposed a linearly varying deceleration 

parameter and using it they have investigated Bianchi 

Type-II dark energy model in f(R, T) gravity. It is used 

in Bianchi type-V cosmological model with of 

holographic dark energy to escape the Big Rip 

singularity [35]. Singh et al.[36] have been studied the 

homogeneous and anisotropic Bianchi type-I 

cosmological model in the presence of viscous uid 

source of matter, which starts with a big bang and ends 

in a Big Rip. The kinematical behaviour of LVDP along 

with null energy condition (NEC) has been explored in 

the framework of f(R; T) gravity for Bianchi type -I and 

V space-time[37]. Akarsu et al.[38]have described the 

fate of the universe through parametrization q = 

q0+q1(1-t/t0), which is linear in cosmic time t, along 

with two well-known additional parametrization of the 

DP q = q0+q1(1-a/a0) and q = q0 + q1z, where z and a are 

the redshift parameter and scale factor respectively. 

Furthermore, they have studied the dynamics of the 

universe in comparison with the standard ^CDM model. 

Sahoo and Sivakumar [39] have obtained the model for 

perfect fluid source coupled with strange quark matter 

with linearly cosmic time parametrization of the 

deceleration parameter. 

 The present paper is organized as follows. In sect.1, a 

brief introduction is given. The field equations in metric 

version of f (R, T) gravity is given in sect. 2. In section 

3, explicit field equations in f (R, T) gravity are obtained 

by using the particular form of the functions f(T) = λT , 

which are used by Harko et al. [40], with the general 

class of axially symmetric metric in the presence of 

perfect fluid. Section 4 deals with cosmological 

solutions of the field equations using the linearly 

varying deceleration parameter by considering 

physically relevant assumptions and also discuss some 
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physical properties of the model. Conclusions are given 

in sect.5. 

 

2. GRAVITATIONAL FIELD EQUATIONS 

OF ),( TRf GRAVITY 

The ),( TRf theory of gravity is the modifications of 

General Relativity (GR). The field equations of ),( TRf

gravity are derived from the Hilbert-Einstein type 

variational principle. The action for the  modified 

),( TRf gravity is 

   ,,
16

1 4 xdgLTRfS m     

     

 
(1)

 
where  TRf , is an arbitrary function of the Ricci 

scalar TR,  is the stress energy tensor 
ijT  of the matter 

and
mL  is the matter Lagrangian density, The energy 

momentum tensor
ijT  is defined as 

 
.

2
ij

m

ij
g

Lg

g
T



 




    

     

 

(2)
 

Here we assume that the dependence of matter 

Lagrangian is merely on the metric tensor
ijg  rather 

than its derivatives. 

In this case, we obtain 

.
ij

m
mijij

g

L
LgT






    

     

 

(3)
 

The ),( TRf  gravity field equations are obtained by 

varying the action S with respect to metric tensor 
ijg . 

  ,),(),(8),(),(
2

1
),( ijTijTijRjiijijij TRfTTRfTTRfggTRfRTRf  
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where i  denotes covariant  derivative. 

Now contraction of equation (4) gives  

 ,),(8),(2),(3),(   TTRfTTRfgTRfRTRf TijRR

      
(6)

 

Where
i

i  . Equation (6) gives a relation between 

Ricci scalar R and the trace T of energy momentum 

tensor. Using matter Lagrangian mL  the stress energy 

tensor of the matter is given by 

  ,ijjiij pguupT  
   

     

 
(7) 

where  1,0,0,0iu is the four velocity in 

commoving coordinates which satisfies the condition 

1i

iuu and 0 ij

i uu .  and p are energy 

density  and pressure of the fluid, respectively, and the 

matter Lagrangian can be taken as pLm  since there 

is no unique definition of the matter Lagrangian. Then 

with the use of (5) we obtain the variation of stress 

energy of perfect fluid expression 
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,2 ijijij pgT 
    

     

 
(8) 

On the physical matter of the matter field, the field 

equations also depend through the tensor ij . Hence in 

the case of ),( TRf gravity depending  on the nature of 

the matter source, we obtain several theoretical models 

corresponding to different matter contribution for 

),( TRf gravity are possible.  However, Harko et al. 

[40] gave three cases of these models. 

 
   

     















TfRfRf

TfRf

TfR

TRf

321

21

2

),(

  

     

 

(9) 

In this paper, we are focused to the first class, i.e. 

 TfRTRf 2),(   

where  Tf is an arbitrary function of stress energy 

tensor of matter. We get the gravitational field equations 

of ),( TRf gravity from equation (4) as 

      ijijijijijij gTfTfTTfTRgR 2228
2

1
 

 

     

 

(10)
 

where the  prime denotes differentiation with  respect to 

the argument. If the matter source is a perfect fluid then 

the field equations (in view of equation (8)) becomes 

       ijijijijij gTfTfpTTfTRgR  228
2

1


 

     

 
(11) 

3. METRIC AND FIELD EQUATIONS 

We consider the axially symmetric metric (Bhattacharya 

and Karade [22]) as 

       ,22222222 dztBdfdtAdtds  
     

 
(12) 

with the convention 

BAandtxandzxxx ,,,, 4321  

 are functions of the proper time t  alone while f  is a 

function of the coordinate   alone . In view of 

equation (7) for axially symmetric space-time (12) , the 

field equations (11) leads to 

  ,38   p
B

B

AB

BA

A

A 

  

     

 

(13)

 

  ,382
2

2

 










 p

fA

f

A

A

A

A 

 

     

 

(14) 

  ,382
2

2

 p
fA

f

AB

BA

A

A











 

 

     

 

(15) 

where an overhead dot and dash represents 

differentiation with respect  to t and  respectively.  

The functional dependence of the metric together with 

equation (14) and (15) imply that 
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.tan, 22 tconsmm
f

f




   

     

 

(16) 

If 0m , then   0,21   ccf
  

     
(17) 

where 
21 candc  are integrating constants. Without 

loss of generality, by taking 01 21  candc we get

   f resulting in the flat model of the universe 

(Hawking and Ellis [41]).  

Now the field equations (13)-(15) reduces to 

  ,38   p
B

B

AB

BA

A

A 

  

     

 

(18)

 

  ,382

2

 







 p

A

A

A

A 

  

     

 

(19) 

  .382

2

 p
AB

BA

A

A








 

  

     

 

(20) 

The spatial volume is given by  

BAaV 23         

     

 (21) 

where a is the mean scale factor. 

The mean Hubble parameter H for axially symmetric 

metric is given by 











B

B

A

A

a

a
H


2

3

1

    

     

 

(22) 

The directional Hubble parameter in the directions of 

zand, are 

B

B
Hand

A

A
HH z


 

   

     

 

(23) 

The deceleration parameter is  

2a

aa
q






     

     

 

(24) 

4. SOLUTIONS OF THE MODEL 

Equations (18)-(20) are three independent equations in 

four unknowns ,,, pBA . Hence to find a 

determinate solution, we assume expansion scalar  is 

proportional to the shear scalar  which yields  

nBA      

     

 (25) 

 Subtracting (18) from (19) and taking second integral, 

we obtain the following relation 




dt
a

k

ek
B

A 31

1

2

     

     

 

(26) 

Thus equation (26) gives values of BA, as 
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    
dt

an

nk

n

n

ekA
3

1 1

11

2 1n     

     

 (27) 

    
dt

an

k

n ekB
3

1 1

11

1

2 1n     

     

 (28) 

Thus the metric functions are found explicitly in terms 

of average scale factor a . 

4.1. Case I:    tta sinh  

As suggested by Pradhan et al. [42], firstly we consider 

the variation of scale factor a with cosmic time t by the 

relation  

   tta sinh
    

     

 
(29) 

where  is an arbitrary constant. 

Using equation (29) into (27) and (28), we have the 

following set of expressions for the scale factors 

   
  






dtt

n

nk

n

n

ekA

31 sinh
11

2


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 (30) 

   
  






dtt

n

k

n ekB

31 sinh
11

1

2



         1n    

     

 (31) 

The physical quantities of observational interest in 

cosmology such as directional Hubble parameters  iH

, spatial volume  V , mean anisotropy parameter    , 

shear scalar  2
 
and expansion scalar    are 

respectively given by 

   tn

nk
HH




sinh1

1




       

     

 

(32)
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k
H z

sinh1

1


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 (33) 

 tV 3sinh
                    

      (34) 
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123
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(35) 

 
   tn

nnk



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sinh1

123


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(36) 

 
   tn

nk




sinh1

123 1






    

     

 

(37) 

The deceleration parameter as  

 tq 2tanh
    

     

 

(38) 

Using equations (30) and (31) in (19) and (20), we 

obtain the values of pressure and energy density as  

      
         nktnnk

tn

nk
p 


 2cosh12338

38sinh1
112222

1 


      

(39) 
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      
         nktnnk

tn

nk



 238cosh123

38sinh1
112222

1 




     

(40) 

4.2. Physical Behavior of the model 

When 0t the scalar expansion and shear scalar are 

infinity but at t the scalar expansion and shear 

scalar are zero. The model of the universe start with big 

bang Spatial volume expands exponentially as t 

increases and becomes infinitely large as t .The 

directional Hubble parameters zHHH ,,  are 

infinite at 0t and vanishing at t .The shear 

scalar become zero as t  . We observe pressure 

and energy density remains always positive and it 

converges to zero as t . From equations (30) and 

(31) we observe that the spatial scale factor become 

constant at the initial epoch 0t . Since 0lim 
 



t
the 

model does not approach isotropy for large value of t.
  

      4.3. CASE II:   tteta   

Following Amirhashchi et al.[43], we consider  the  

following scale factor 

   tteta 
     

     

 
(41) 

Using equations (41) in (27) and (28), we have the 

following set of expressions for the scale factors 

   
 






dtte

n

nk

n

n t

ekA

3
1

11
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 (42)
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


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dtte

n

k

n

t

ekB

3
1

11

1

2 1n     

     

 (43) 

The physical parameters as described in the case I are 

expressed as  

  tetn
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1
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(47) 
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1
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(48) 
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  tetn
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1

1
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


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(49) 

The deceleration parameter as  

 
 21

2






t

tt
q

     

     

 

(50) 
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Using equations (42) and (43) in (19) and (20), we 

obtain the values of pressure and energy density as  

    
        nknkettn

etn

nk
p t

t



 2311638

381
11

32

22662

1 


      

(51) 

             nknkettn
etn

nk t

t



 2383116

381
11

32

22662

1 




     

(52) 

4.4. Physical Behavior of the model 

We observe that the spatial volume is zero at 0t  and 

expansion scalar is infinite, which shows that the  

universe starts evolving with zero volume at 0t  

which is big bang scenario. We observe that the spatial 

volume increases exponentially with time. The physical 

quantities pressure  p , energy density   , Hubble 

factor  H ,  shear scalar  2
 
and expansion scalar

   diverge at 0t . As t  volume becomes 

infinite whereas  ,,, Hp approaches  to zero. We 

observe that the  average scale factor   0ta as 

0t  and   ta  as t  .This indicates that 

there exists inflation. Since 0lim 
 



t
the model does 

not approach isotropy throughout the  evolution of the  

universe.
 
 

5. CONCLUSION 

In this paper, we have considered a cosmological model 

in the presence of perfect fluid and variable deceleration 

parameter in f (R, T) theory of gravity. According the 

choice of f (R, T), we are focused to the first class, i.e. 

 TfRTRf 2),(  . 

The exact solutions of the modified Einstein’s field 

equations are obtained for the axially symmetric 

universe with perfect fluid. We assumed two types of 

scale factors (i)
 
   tta sinh  and (ii)

 
  tteta 

which yield time dependent DP.  

The observations of both the model are as follows: 

The mean anisotropy parameter becomes constant for 

both models. It can be observed that our models are 

expanding and accelerating universe which starts at a 

big bang singularity. In both the cases energy density is 

positive valued and decreasing function of time. It is 

interesting  to notice that q decreases very rapidly and 

then after it remains constant. It is observed that, our 

derived model has accelerated expansion at present 

epoch which is consistent with recent observation of 

type Ia supernova and CMB anisotropies.  
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